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ABSTRACT .

A three year field study of the western treehole mosquito,
Aedes sierrensis, shows that though overall larval mortality anc
rate of larval parasitism by a ciliate, Lambornella clarki, art
density-independent, pupal weight of either sex is 1nversely
correlated with larval density. Larger pupae give rise to adult:
that lay more eggs per batch in the laboratory. In nature, ¢
positive correlation is found between adult longevity and adull
size. From these observations, expressions relating larva)
density to adult fecundity are derived and, in conjunction witl
estimates of egg and pupal mortality in nature, integrated witl
the population model of Hassell (1975) to predict that the
population density will tend to damp exponentially to ar
equilibrium level of at least 1,219 larvae/liter. Density-
dependent size at metamorphosis 1s therefore the basis of
population regulation in this species. Factors affecting malc
fitness are briefly considered. Both size at metamorphosis anc
the time of metamorphosis are important in this regard: large:
males can remain active over a wider temperature range than thei:
smaller conspecifics, but early season males have greater

- opporturiity to mate with large, early season, high fecundity

females.
INTRODUCTION

Despite the medical importance of the Culicidae, quantitative
analysis of the population dynamics of members of this group has
been done for only a handful of species. Much discussion of
‘population dynamics’ of mosquitoes 1is based on laboratory
studies or anecdotal accounts of field populations. Statistical
inference based on data from natural populations of mosquitoes is
rarely used to predict population behavior. In addition, workers
tend to concentrate on either larval or, wmore commonly, adult
populations. Elucidation of population dynamics requires that
the appropriate field measurements be made on all stages of the
life cycle. That this approach is rarely taken by medical
entomologists is evident from the following statement from Varley
et al.'s (1973) text on insect population ecology:

*We have found few examples from medical entomology to
illustrate the principles of population dynamics. Too
often only the easy things have been measured, and the
interpretation of the figures demands observations
which have not yet been made." (p.1)

Medical entomologists are typically interested in predicting
either (1) disease outbreaks due to an increase in the vector
;D

~
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population or (2) effects of various control measures upon vector
populations. Attainment of the first goal requires
identification of the key environmental factors correlated with
adult abundance. Many years of data may be necessary;
understanding of the process of population regulation is not
required. But to progress towards the second goal, an
understanding of population regulation is essential. No more
than a few years’ census data may be necessary, but all of the
appropriate parameters must be measured. These include (1)
quantification of the response of the population to its own
density, (2) estimation of the overall density independent
mortality and (3) an estimate of the realized rate of increase of
the population. A population which is strongly self-limiting, or
is 1limited by predation or parasitism, may nevertheless exhibit
extreme fluctuations in abundance due to the influence of
environmental factors. Understanding of population regulation
does not, therefore, allow one to predict fluctuations 1in
abundance with great accuracy, but it can provide a rough
indication of long term population behavior and abundance. More
importantly, it allows realistic prediction of the effects of
various control methods on the animal’s vectorial capacity.

In this study, I report the results of an investigation of
the population dynamics of the western treehole mosquito, Aedes
sierrensis (Ludlow), in which the main question is: "How is the
population regulated?”

STUDIES OF THE IMMATURE STAGES

The life cycle of A. sierrensis is adapted to the seasonal
rainfall pattern of the west coast of the United States (Fig. 1):
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Fig. 1. Thirty year mean rainfall pattern at Eugene, Oregon and its relationship to
the 1ife cycle of A. slerrensis.
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Eggs hatch when treeholes fi11 in October, November or December.
Larval development continues throughout the winter, with pupation
beginning in April and continuing until treeholes dry up in early
summer. Adult activity occurs from May to September. One
generation is produced each year.

Egqg survivorship

Egg survivorship was estimated as follows: 20 ovitraps
constructed according to the design of Mortenson et al. (1978)
but equipped with maple paddles were placed in the field for one
week in 1late June, 1983. After 10 days, the paddles were
collected and eggs on each paddle counted. It was observed that
eggs were oviposited only on the side of the paddle adjacent to
the wall of the ovitrap. Ten paddles with eggs were then placed
in two dry treeholes (five per treehole) with the paddles rotated
so that the side with eggs faced towards the center of the hole.
Further oviposition, 1if it occurred, would therefore be on the
side of the paddle without the experimental eggs. The paddles
were left undisturbed in the treeholes for four months, until
November. One treehole had flooded by the time the paddles were
retrieved; no unhatched eggs were visible on any of the five
paddles, but many split, empty eggs were visible. Eggs on the
other five paddles were recounted, then subjected to a strong
hatching stimulus in the laboratory. No newly oviposited eggs
w%re observed on the paddles. Two trends are evident in €he data
(Table 1):

Table 1. Egg survivorship of A. sierrensis on five ovitrap paddles, after four wmonths
in treeholes, and number and percent hatch after flooding with water of low 02 tension

in the laboratory.

No. eggs oviposited on paddles 865
No. eggs remaining on paddles after four

- months in treeholes 464
No. hatched n
Percent hatch of remaining eggs 81.3
Percent hatch of original eggs 43.6

(1) after four months in the treehole the number of eggs on the
paddles 1is reduced and (2) among the eggs still attached to the
paddles, hatchability is very high. The reduction in number of
eggs on the paddles could be due to predation, decomposition of
infertile eggs, or a result of eggs simply dropping off the
paddles into the treehole. I believe the last explanation to be
the most probable, since some eggs still present on the paddles
after four months were 1loosely attached. Nevertheless, both
estimates of egg survivorship are used in subsequent calculations.

Larval survivorship
of

Two complications arise when studying larval populations
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For females:

PUPAL WEIGHT = 4.88 - 0.82(LOG DENSITY) (98]

Pupal survivorship

Pupal survivorship was estimated by placing pupae from four
different treeholes in restraining containers in the treeholes
from which they originated. Containers were constructed of
plastic tubing (3.5 cm diameter; 2 cm length; wall 0.5 mm thick)
with 1 mm nylon mesh covering the botton. Containers were
attached to a steel rod that provided support at the appropriate
depth in treeholes. After sufficient time had elapsed for
ecdysis, adults and dead pupae within each container were
counted. Of 644 pupae set out in these four holes, 618 or 96%

successfully ecdysed.

PUPAL SIZE AND ADULT FITNESS

Pupal weight 1is inversely proportional to larval density
(Fig. 2), but how does pupal size translate into adult fitness of
males and females? To answer this question, I examined the
relationship between pupal weight and (1) adult longevity, (2)
number of eggs laid per batch, and (3) male mating success.

I first examined laboratory populations. HWild-caught pupae
were weighed and single females kept with 1-3 males in 0.95 liter
jars. Females were offered a blood source every two days and
mortality of both sexes was tallied daily. Eggs laid per batch
was positively correlated with pupal weight (Fig. 3), where

200} SR
Y = -12.92 + 38.86X o
R?=0.89 LIk B
= P < 0.0001
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Fig. 3. Number of egys laid per batch by A. sierrensis captured as pupae and fed to
repletion in the laboratory as a function of pupal wet weight.
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NUMBER EGGS PER BATCH = -12.32 + 38.85(PUPAL WEIGHT) (2)

but there was no relationship between adult survivorship and
pupal weight for either sex (Fig. 4).
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Fig. 4. Survival of adult §. sierrensjs in the laboratory as a function of pupal
weight.

Although the results displayed in Fig. 4 indicated no size-
specific survivorship in the laboratory, it is still important to
assess size-specific survivorship and potential fecundity in the
field. I was unable to determine gonotrophic age using
Polovodova's method (Beklemishev et al. 1959), but could reliably
age-grade females into parous and nulliparous age classes. For a
mosquito exhibiting gonotrophic concordance, parous rate 1is
equivalent to survivorship per gonotrophic cycle only if
recruitment into the population is constant (MacDonald 1957).
Though A. sierrensis exhibits gonotrophic concordance, recruit-
ment is clearly not constant. This problem can be overcome by
sampling the adult population from the beginning of recruitment
until the end, using a series of small samples (Birley et al.
1983). Under such circumstances, parous rate is again
equivalent to survivorship per gonotrophic cycle.

I therefore sampled adults daily from their first appearance
in May until activity ceased in September. Adults were collected
with an aspirator and small net as they approached the bait
{myself) for one-hour periods each afternoon from 9 May to 11
September, 1983. The first adult A. sierrensis was captured on
12 May; the last on 4 September. Both sexes were collected, as
males of this species exhibit host attendance. Adults were taken
to the laboratory and frozen. Females were usually dissected
within three days to determine parity; the wing length of each

individual of both sexes was also determined.
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POPULATION DYNAMICS OF AEDES SIERRENSIS

Female size, survivorship and fecundity
The 883 females captured during the course of the season

L] L] L] L] L] L]
: . were divided into ten approximately equal size categories. The
v 30} <o Male - median wing length of each size category was transformed to pupal
@ *oee M8 wet weight using an eguation derived from lab measurements of the
5 —— Female wing length of 120 females of known pupal weight:
L od
g' PUPAL WEIGHT = -0.12 + 0.075(WING LENGTH)3 (3)
o (r2= 0.95; P < 0.0001)
»n 201 100 J
= o where pupal weight is measured in mg and wing length in mm. The
ég 5 relationship between calculated pupal weight of wild-caught
< 175 € adults and the parous rate of each size category is shown in Fig.
8 6:
© H
qh) 10f 180 R 7 T T T T ¥
a g
£ 125 8
= g 0.6} 1
0‘ - -0,
A M J J A S
. 0.5¢ ¢ -
Fig. 5. Eleven day cunning mean of male and female A. sjerrensis adults captured
during 1983 and the cumulative percent pupation in treeholes at the study site during
the same period. Iy
[ 0-4 [~ -1
-
Fig. 5 shows. the relationship between number of adults &
captured (11 day running mean), cumulative percent pupation in @
treeholes, and date. The median date of pupation of males (11 3 0.3} B
May) 1s 12 days earlier than that for females (23 May). This o
extreme degree of protandry 1is reflected 1in the adult &
collections, also: the ratio of males to females is highest early
in the season, gradually decreasing as the season progresses. 0.2}k |
The overall sex ratio of all pupae collected is not, however, N
significantly different from that of the total adult sample P = -0.100 + 0.300(PW) - 0.037(PW)’
(Table 3): R%=074
0.1} Py < 0.005 N
Table 3. Sexes of A. sierrensis captured as pupae and adults during the spring and Px2 < 0.005
summer of 1983.
ZIZZZ-ZIZZZ---------,7-----------------------------------------------IIZZIIIZZZIZZZZ:: , \ \ R ,
No. males No. females % males ‘ 1 2 3 4 5
______________________________________________________________________________________ Pupal Weight (mg)
pupae 2,119 1,208 62.2 :‘égA?. Parous raggd:g:gdatgg lg:;.c.l.) as a function of calculated pupal weight for
adults 1,569 [:[:k3 64.3

Since both the phenology and sex ratio of the pupal and adult % PAROUS = -0.10 + 0.30(PUPAL WEIGHT)-0.037(PUPAL NEIGHT)2 (4)

collections are remarkably consistent, it seems likely that the
adult collections represent an unbiased sample of the adult The relationship is clearly curvilinear, but for 9 of the 10 size

population active during the 1983 season. classes, an increase in size leads to increased survivorship.
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The reason for the decline in survivorship of the largest size
class is unknown; perhaps these animals suffer increased
mortality due to predators which orient to their prey visually.
Assuming that the mortality rate is constant for all age classes,
the parous rate for a population sampled in the manner described
is equal to the survival rate per gonotrophic cycle. For the
purposes of the present analysis, however, we require an estimate
of the number of eggs a female of a given size class is expected
to produce. If P is the survivorship per gonotrophic cycle, then
the number of egg batches laid per female is equal to (Miller

et al. 1973):

o
L, P =13 (5)

It 4is now possible to calculate the expected fecundity of a
female of a given size, as follows. For each pupal weight, the
survival rate per gonotrophic cycle was estimated with equation
(4) converted to expected number of egg batches laid with
equation (5), and then multiplied by the expected number of eggs
laid per batch estimated with equation (2). Fig. 7 illustrates

this relationship.

150
0T | vt pw

Expected Fecundity
@ o
o o

0 1 2 3 4 5
Pupal Weight (mg)

Fig. 7. Expected fecundity (EF) of A. siegrensis adults as function of their pupal
welight. Inset: method of calculation of EF. Numbers refer to equations in the text

(WL = wing length; PH = pupal weight; P = parous rate; EPB = eggs laid per batch).
While the observed variation in weight is only six-fold, the
range of expected fecundities varies more than 30-fold.
Qualitatively, at least, it therefore appears that density
dependent size variation in pupal size could be a factor capable
of regulating the population.
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Size, temperature, activity and male fitness
Male abundance is maximal during the month of June, yet

marked fluctuations are also evident. Much of the fluctuation is
due to the fact that smaller males are apparently inactive when
temperatures are low (Fig. 8b).

- 375 9. n?=0.0001 ] 325 ® Rl=0.33 |
m H d P<0.00%
E .t . .
m@.mo. .... ... . 3.00f ] .
=3 ' S
M 3 oo .
<325 e, i 2.75 1
o
] .
=
3.00 , R 2.50F , R T
15 20 25 15 20 25
Female Male

Temperature (C°)

Fig. 8. Relationship betueen mean wing length of A. sfervrensis adults and ambient
temperature for females (a) and aales (b) during the period of maximum abundance (for
either sex (females -- 10 June to 11 July; males -- 1 June to 30 June) .

The same phenomenon does not occur for females (Fig. B8a), t:»nhu.
are larger than all but the largest males. Larger males, which
are able to remain active over a greater temperature range than
their smaller conspecifics, will thus presumably realize greater
reproductive success due to increased opportunities for mating.
Nevertheless, the timing of male development is probably a more
important determinant of male fitness. Fig. 9 shows the wing
length of nulliparous females collected at each date. Parous
females are not included since these are presumably mated,
unavailable to males, and therefore unimportant from the
standpoint of sexual selection. At the beginning of the season,
the largest females are active. As shown by Fig. 7, these
females will exhibit much higher fecundity than those ecdysing
later in the season. It is therefore an advantage to males to be
ready and waiting to mate with these large females. This
advantage to the earliest males, I believe, 1is the selective
force behind the observed high degree of protandry in A.
sierrensis. This strategy will be effective, however, only if
male survivorship is high. Examination of Fig. 5 shows that this
is indeed the case: 90% of males have pupated by 26 May, yet the
adult male population does not begin its decline until 1 July,
indicating that males survive three to four weeks on the average

(allowing B8-14 days spent as a pupa)l.

IMPLICATION FOR POPULATION DYNAMICS

Various models of single species population dynamics have
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POPULATION DYNAMICS OF AEDES SIERRENSIS

However, in their examples, k is based on mortality and F is
assumed to be a constant. For A. slerrensis, since is size-
dependent (Fig. 7)., F will also vary. What value of EF should be

used in the calculation of F?
If D¢ = jarval density at generation t, then

logD .43 = logDe + 10gEF + logS (8)
By definition,
k = 109EFpax - 10gEF (9)
where EF pax is a female’'s maximum expected fecundity.

Substituting,
logDy4) = logD, + logEFmax - k + 10gS (10)

At equilibrium logD ., = poocn and

k = Hoammrmx.+ 1ogS (11)

EF nax Can be estimated graphically from Fig. 7; a more precise
jterative estimate is 155.73 eggs, attained at a pupal weight of
4.78 mg. Two estimates of S are used, based on upper and lower
measures of egg survivorship (Table 4), allowing two graphical
of D+ for each plot of k versus log density (Figure

estimates
1.0} ' ' d v v T T .
‘ -
-~ (4), X
3 0.75} rwm.._......«-. W ow L =0.80]
Im.w 2 EPB b=0.48
1
Fm 0.501<"g 5 gimnioobingeiions  f b=0.26]
w
S
= 0.25 .
X
Y A A 2 N M 1
1] 1.0 2.0

Larval Density (log no. larvae/liter)

Fig. 10. Plot of k versus log larval density for A. ierrensis. The inset shows the
method of calculation of the expected fecundity {EF) of adults produced at each
density. Numbers In parentheses refer to equations in the text (PW = pupal weight, P
= parous rate; EPB = eggs laid per batch). Plot Y 13 based on equation (1); plots X
and Z are based on the 95% C.I. of equation (1). Slopes (b) of X, ¥ and Z at maximum
density ( = the highest density observed in the field) were estimated graphically:
such an estimate is shown for X only. The graphical method of estimation of DA is
also f1llustrated, based on X and S * 0.212 {Table 4). Other estimates of D* are

listed in Table S.
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10). A calculator program was then used to find iteratively a
more precise value for each D#; these values are shown in Table

5.

Table S. Estimates of DA (equilibrium density) of A. siergensis in Oregon, as number
of first instars appearing per liter of treechole water during the course of a season.
A separate estipate of D4 is obtained for each estimate of S (Table 4); two estimates
of D* are therefore obtained for each of the three plots (X, ¥ and Z) of k versus log
density shown in Fig. 10. Gee text for the method of calculation of D+.

S = 0.0212 S = 0.0395
(X) 1.219 3.412
(8 2] 1,552 6,38)
(2) 2,636 25,003

The lowest estimate of D* is 1,219 larvae/liter, indicating that
the observed high densities of A. sierrensis in Oregon (Table 2)
and 1in the southern parts of its range (W. H. Hawley, personal
obervation) are not transient, but are a consequence . of the
underlying dynamics of the population.

Analysis of 1life table data of the sort presented here has
been done for only two other mosquito species. Based on
reanalysis of data of Southwood et al. (1972) and Sheppard et
al. (1969), Dye (1984a) predicted that a population of Aedes
aegypti (L.) 1in Bangkok will exhibit exponential damping to
equilibrium; mortality of immatures in this species is
undercompensating Cb<1l in equation (6)1. Chubachi (1979) also
found undercompensating density dependent mortality among larvae
of a population of Culex tritaeniorhynchus gummorosus Dyar in
Japan; exponential damping to equilibrium is therefore expected

of this population, also.

Such predicted behavior is typical for insects: Hassell et
al. (1976) collated field data on 24 species; most were predicted
to exhibit exponential damping. These predictions must
nonetheless be viewed with caution, as several forest insects for
which many decades of census data are available exhibit long term
cyclic changes in abundance, a result, quite possibly, of
interaction with viral pathogens (Anderson & May 1981).

DIFFICULTIES WITH THE ANALYSIS: PARASITES

A key assumption in the foregoing analysis is that there is
no density dependent mortality due to predation or parasitism.
If there is, both the long term behavior and eguilibrium level of
the population could be altered. In fact, if more than one
density dependent factor acts on a population (e.g., a pathogen
and intraspecific competition) the order in which the factors
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the problem of getting the pathogen into the treeholes remains.
Though infected adults could presumably fly to a treehole, die
there and so spread the infection, this method of dispersal 1is
likely very inefficient as infected females cannot become gravid
and thus many not go near treeholes. So even if a strain of
Lambornella with the appropriate characteristics could be
developed, introduction into treeholes would still depend on the
ability of humans to locate them. A transovarially transmitted
parasite of sufficient pathogenicity would be ideal, but no such
pathogen 1s known to infect A. sierrensis.

What would cost more: (1) an intensive, sustained program of
locating and destroying treeholes or (2) a program to identify,
develop and release a pathogen appropriate to the task? To
answer this question, a field experiment, with appropriate
controls, should be performed to assess the effectiveness of a
treehole filling program; such an experiment has been done
for A. triseriatus, with encouraging results (Garry & DeFoliart
1975). That being said, it is nonetheless true that A.
sierrensis and 1its suite of pathogens represents a marvelous
community in which to study parasite-host interactions in nature.
Whether such basic research will lead to more effective control
of this mosquito is possible, but by no means certain.
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